Automated Benchmarking of Functional Data
Structures

Graeme E. Moss and Colin Runciman
(© Springer-Verlag

Department of Computer Science, University of York, UK
{gem,colin}@cs.york.ac.uk

Abstract. Despite a lot of recent interest in purely functional data
structures, for example [Ada93, Oka95, BO96, Oka96, OB97, Erw97],
few have been benchmarked. Of these, even fewer have their performance
qualified by how they are used. But how a data structure is used can
significantly affect performance. This paper makes three original con-
tributions. (1) We present an algorithm for generating a benchmark
according to a given use of data structure. (2) We compare use of an
automated tool based on this algorithm, with the traditional technique
of hand-picked benchmarks, by benchmarking six implementations of
random-access list using both methods. (3) We use the results of this
benchmarking to present a decision tree for the choice of random-access
list implementation, according to how the list will be used.

1 Motivation

Recent years have seen renewed interest in purely functional data structures:
sets [Ada93], random-access lists [Oka95], priority queues [BO96], arrays [OB97],
graphs [Erw97], and so on. But, empirical performance receives little attention,
and is usually based on a few hand-picked benchmarks. Furthermore, the per-
formance of a data structure usually varies according to how it is used, yet this
is mostly overlooked.

For example, Okasaki [Oka95] uses five simple benchmarks to measure the
performance of different implementations of a list providing random access. He
points out that three of the benchmarks use random access, and two do not.
However, all the benchmarks are single-threaded. How do the data structures
perform under non-single-threaded use? We simply do not know.

Okasaki presents many new data structures in his thesis [Oka96], but without
measurements of practical performance. He writes in a section on future work:
“The theory and practice of benchmarking [functional] data structures is still in
its infancy.”

How can we make benchmarking easier and more reliable? A major problem
is finding a range of benchmarks that we know use the data structure in different
ways. If we could generate a benchmark according to a well-defined use of the
data structure, we could easily make a table listing performance against a range
of uses.

www.manaraa.com

To make precise “the use of a data structure” we need a model. Section 2
defines such a model: a datatype usage graph, or DUG. Section 2 also defines
a profile, summarising the important characteristics of a buG. Section 3 gives
an algorithm for generating a benchmark from a profile. Section 4 introduces a
benchmarking kit, called Auburn, that automates benchmarking using the algo-
rithm of Sections 3. Section 4 then compares benchmarking six implementations
of random-access lists manually against using Auburn. Section 5 discusses related
work. Section 6 concludes and discusses future work.

Some of the details of this paper are only relevant to the language we use:
Haskell, a pure functional language using lazy evaluation. Such details are clearly
indicated.

2 Modelling Datatype Usage

How can we capture the way an application uses a data structure? Take the Sum
benchmark of [Oka95] as an example of an application. Sum uses an implemen-
tation of random-access lists (see Fig. 1) to build a list of n integers using cons,
and then sum this list using head and tail. Code for Sum is given in Fig. 2(a).

Let us use a graph to capture how Sum uses the list operations. Let a node
represent the result of applying an operation, and let the incoming arcs indi-
cate the arguments taken from the results of other operations. Let any other
arguments be included in the label of the node. Figure 2(b) shows this graph.

Node 1 represents the result of empty, which is an empty list. Node 2 repre-
sents the result of applying cons to 1 and empty, which is a list containing just
the integer 1. And so on, till node n+ 1 represents a list of n copies of the integer
1. This is how Sum builds a list of n integers.

Node n+ 2 represents the result of applying head to this list, which is the first
element in the list. Node n + 3 represents the result of applying tail to this list,
which is all but the first element. Node n + 4 represents the result of applying
head to the list of node n + 3, giving the second element. Every other element
of the list is removed in the same way, till node 3n represents the last element,
and node 3n + 1 represents the empty list. This is how Sum sums the list of n
integers.

The authors introduced such a graph in [MR97], given the name datatype
usage graph, or DUG. The definition was informal in [MR97] but we shall now
give a brief formal definition. To abstract over many competing data structures
providing similar operations, we insist on a DUG describing the use of an ADT.
The same DUG can then describe the use of any implementation of that ADT.
We restrict an ADT to being simple.

Definition 1 (Simple ADT)
A simple ADT provides a type constructor T of arity one, and only operations
over types shown in Table 1.

Example 1
The random-access list ADT, whose signature is given in Fig. 1, is a simple ADT,

www.manaraa.com

empty :: List a

cons :a— Lista — Lista

tail : List a — List a

update :: List a — Int = a — List a
head : Lista — a

lookup :: Lista — Int — a

Fig. 1. The signature of a random-access list abstract datatype (ADT).

(a) sum :: Int — Int
sum n = sumlList n (buildList n)
where buildList 0 = empty
buildList k = cons 1 (buildList (k-1))
sumList 0 xs = 0

sumList k xs = head xs + sumlList ((tail xs)
Node Operation
1 empty
2,...,n+1 Ax - cons 1 x

n+2,n+4,...,3n | Ax - head x
n+3,n+5,...,3n+ 1] Ax - tail x

Fig. 2. The Sum benchmark of [Oka95] using the operations of the ADT in Fig. 1.
(a) Code. (b) DUG.

Table 1. The types of operations allowed in a simple ADT providing a type constructor
T, where a is a type variable. Any value of type T a is called a wersion. Each ADT
operation is given a single role. A generator takes no versions, but returns a version.
A mutator takes at least one version, and returns a version. An observer takes at least
one version, but does not return a version.

Argument Types Result Type| Role
a, Int Ta Generator
T a (at least one), a, Int Ta Mutator
T a (at least one), a, Int| a, Int, Bool | Observer

www.manharaa.com

providing the following: a type constructor List; a generator empty; mutators
cons, tail, and update; and observers head and lookup.

The nodes are labelled by a function 5 with partial applications of ADT opera-
tions.

Definition 2 (DUG PAP)

A puc pAP (partial Application) is a function f obtained by supplying zero or
more atomic values as arguments to any operation g of a simple ADT. We say
that f is a PAP of g.

Example 2
The DUG pAPs that label nodes of Fig.2(b) are: empty, Ax - cons 1 x, Ax - head
x, and Ax - tail x.

To indicate which argument corresponds to which arc, if more than one arc is
incident to a node, we order the arcs with positive integers using a function 7.
To indicate the order of evaluation, we label each node with a positive integer
using a function o.

Definition 3 (DUG)

Given a simple ADT A4, a DUG is a directed graph G with the following functions:
— A function 7 labelling every node with a PAP of an operation of A
— A function 7, which for all nodes with two or more incoming arcs, when

restricted to those arcs, is a bijection with the set {1,...,j} for some j > 2

— A bijection o from the nodes to the set {1,...,n} for some n > 0

The following conditions must also be true:

Cy If w is a successor of v, then o(w) > o(v).

C5 Every node labelled by 7 as an observer has no arcs from it.

The reasons for imposing these conditions are given in the problems list of

Sect. 3.1.

Example 3

A pua is shown in Fig. 2(b). The function 7 is given by the table, 7 is redundant
as no node has more than one incoming arc, and o is given by the number
labelling each node.

To help identify important characteristics of use, we compact important informa-
tion from a DUG into a profile. One piece of important information is the degree
of persistence, that is, the re-use of a previously mutated data structure.

Definition 4 (Persistent Arc)
Consider the arcs from some v to vy, ..., v;. Let v; be the mutator node ordered

earliest by o, if it exists. Any arc from v to some v; ordered after v; represents
an operation done after the first mutation, and is therefore persistent.

The properties making up a profile reflect important characteristics of datatype
usage. They are fashioned to make benchmark generation easy. Other reasons
for choosing these properties are not. discussed here see [Mos99].

www.manaraa.com

Definition 5 (Profile)
The profile of a DUG comprises five properties:
— Generation weights: The ratio of the number of nodes labelled with each
generator.
— Mutation-observation weights: The ratio of the number of arcs leading to
each mutator or observer.
— Mortality: The fraction of generator and mutator nodes that have no arcs
leading to a mutator.
— Persistent mutation factor (PMF): The PMF is the fraction of arcs to muta-
tors that are persistent.
— Persistent observation factor (POF): The POF is the fraction of arcs to ob-
servers that are persistent.

Example 5
The profile of the UG of Fig. 2(b) is as follows: the generation weights are trivial
as there is only one generator, the mutation-observation weights are

cons : tail : update : head : lookup =n:n:0:n:0,

the mortality is 1/(2n + 1), and the PMF and the POF are both zero.

3 Benchmark Generation

If we can generate a DUG with a given profile, then a DUG evaluator can act as
a benchmark with a well-defined use of data structure (the given profile). There
are many DUGs with a given profile, but choosing just one might introduce bias.
Therefore we shall use probabilistic means to generate a family of DUGs that
have on average the profile requested.

3.1 DUG Generation
Here are some problems with DUG generation, and the solutions we chose:

— Awoid ill-formed applications of operations. For example, we need to avoid
forming applications such as head empty. We introduce a guard for each oper-
ation, telling us which applications are well-defined. See the section Shadows
and Guards below for more details.

— Order the evaluation. We cannot reject an ill-formed application of an oper-
ation till we know all the arguments. Therefore a node must be constructed
after its arguments. Under the privacy imposed by ADTs and the restric-
tions imposed by lazy evaluation, we can only order the evaluation of the
observers. For simplicity, we evaluate the observers as they are constructed.
The function o therefore gives the order of construction of all nodes, and the
order of evaluation of observer nodes. This is condition C; of Defn. 3.

www.manaraa.com

(a) type Shadow = Int

emptys :: Shadow emptys =0
conss :: Int = Shadow — Shadow conss x s = s+1
tails :» Shadow — Shadow tails s =s-1
updates :: Shadow — Int — Int — Shadow updates six = s
(b) emptyc :: Bool emptyc = True
consg = Shadow — [IntSubset] consg s = [All]
tailg :: Shadow — Bool tailg s = s>0
updateg :: Shadow — [IntSubset] updateg s = [0:..:(s-1),All]
headg :: Shadow — Bool headg s = s>0
indexg :: Shadow — [IntSubset] indexg s = [0:..:(s-1)]

Fig. 3. (a) Shadow operations for random-access lists, maintaining the length of the
list. (b) Guards for random-access lists. A guard returns a list of integer subsets, one for
each non-version argument, in order. (Haskell does not support functions over tuples of
arbitrary size — necessary for the application of an arbitrary guard — so we are forced
to use lists.) If an operation does not take any non-version arguments, a boolean is
returned. The type IntSubset covers subsets of the integers. The value m:..:n indicates
the subset from m to n inclusive, and All indicates the maximum subset.

— Choose non-version arquments. Version arguments are of type T a, and can
be chosen from the version results of other nodes. Choosing non-version
arguments in the same way is too restrictive for example, where does the
argument of type a for the first application of cons come from? Within the
type of each operation, we instantiate a to Int, so we need only choose values
of type Int. For simplicity, we avoid choosing any non-version arguments
from the results of other nodes. This is condition Cy of Defn. 3.

Shadows and Guards. To avoid creating ill-defined applications whilst gen-
erating a DUG, we maintain a shadow of every version. The shadow contains the
information needed to avoid an ill-defined application of any operation to this
version. We create the shadows using shadow operations: the type of a shadow
operation is the same except that every version is replaced by a shadow. A
guard takes the shadow of every version argument, and returns the ranges of
non-version arguments for which the application is well-defined. Any combina-
tion of these non-version arguments must provide a well-defined application.

For example, for random-access lists we maintain the length of the list asso-
ciated with a version node. This allows us to decide whether we can apply head
to this node: if the length is non-zero, then we can; otherwise, we cannot. Simi-
larly, applications of other operations can be checked. Figure 3(a) gives shadow
operations for random-access lists and Fig. 3(b) gives guards.

www.manaraa.com

The Algorithm. We build a DUG one node at a time. Each node has a future,
recording which operations we have planned to apply to the node, in order. The
first operation in a node’s future is called the head operation. The nodes with a
non-empty future together make up the frontier. We specify a minimum and a
maximum size of the frontier. The minimum size is usually 1, though a larger
value encourages diversity. Limiting the maximum size of the frontier caps space
usage of the algorithm.

Figure 4 shows the algorithm. We make a new node by choosing version
arguments from the frontier. We place each argument in a buffer according to
the argument’s head operation. When a buffer for an operation f is full (when
it contains as many version arguments as f needs), we empty the buffer of its
contents vs, and attempt to apply f to vs using the function try_application.

Calling try_application(f,vs) uses the guard of operation f to see whether f
can be applied to version arguments vs. If one of the integer subsets returned
by the guard is empty, no choice of integer arguments will make the application
well-formed, and so we must abandon this application. Otherwise, the guard
returns a list of integer subsets, from which we choose one integer each, to give
the integer arguments is. Applying f to vs and is gives a new node.

Planning for the Future. We plan the future of a new node v as follows. We
use the five profile properties to make the buG have the profile requested, on
average. Mortality gives the probability that the future of v will contain no
mutators. If the future will contain at least one mutator, then the fraction of
persistent mutators should equal PMF. Every application of a mutator bar the
first is persistent. Therefore the number m of persistent mutators is given by:
m PMF

——— =PMF=>m=———

m+1 1 — PMF
Hence a random variable with mean pMF/(1 — PMF) gives the number of addi-
tional mutators. Note that a PMF of 0 guarantees each node is mutated at most
once.

The mutation-observation weights ratio allows us to calculate the average
number r of applications of observers per application of a mutator. We assume
a mutator made v, and let a random variable with mean r decide the number of
observers in the future of v. Typically the number of applications of generators
is very small, and so this assumption is reasonable. The number of observers
ordered after the first mutator is given by a random variable with mean POF.
Finally, we choose which mutators and observers to use from probabilities given
by the mutation-observation weights ratio.

Note that condition Cy of Defn. 3 implies that every observer node has no
future.

3.2 puG Evaluation

A DUG evaluator uses an implementation of the ADT to evaluate the result of
every observation. The nodes are constructed in the same order that they were

www.manaraa.com

generate_dug() =
dug = {}
frontier := {}
Vf-buffer(f) := {}
while #dug < final_dug_size do
if #frontier < min_frontier_size then
g = choose a generator using generation weights ratio
try_application(g,{})
else-if #frontier > max_frontier_size then
remove a node from frontier
else
v := remove a node from frontier
f := remove head operation of v
add v to buffer(f)
if #buffer(f) = number of version arguments taken by f then
vs := buffer(f)
buffer(f) := {}
try_application(f,vs)
fi
fi
od

try_application(f,vs) =
int_subsets := apply guard of operation f to shadows of vs
if each set in int_subsets is not empty then
is := choose one integer from each set in int_subsets
v := make node by applying f to version arguments vs and integers is
shadow of v := apply shadow of f to shadows of vs
if f is an observer then
future of v := empty
else
plan future of v
fi
add v to dug
if v has a non-empty future then
add v to frontier
fi
fi
add each node in vs with a non-empty future to frontier

Fig. 4. DUG generation algorithm.

www.manharaa.com

generated. An observer node is evaluated immediately. This fits the intended
behaviour (see the second problem listed for DUG generation).

4 An Example of a Benchmarking Experiment

Auburn is an automated benchmarking kit built around the benchmark genera-
tion of Sect.3. We shall benchmark six implementations of random-access lists
(1) using Auburn, and (2) using benchmarks constructed manually. We shall
then compare these two methods.

4.1 Aim

We aim to measure the performance of six implementations of random-access
lists: Naive (ordinary lists), Threaded Skew Binary (Myers’ stacks [Mye83]),
AVL (AVL trees [Mye84]), Braun (Braun trees [Hoo92]), Slowdown (Kaplan
and Tarjan’s deques [KT95]), and Skew Binary (Okasaki’s lists [Oka95]). We
will qualify this performance by two properties of use:

— Lookup factor. The number of applications of lookup divided by the number
of applications of ordinary list operations. We use just two settings: 0 and 1.

— Update factor. This is as lookup factor but replacing lookup with update.
Again, we use only two settings: 0 and 1.

There are 4 different combinations of settings of these properties.

4.2 Method

Auburn. We use Auburn version 2.0a. For the latest version of Auburn, see the
Auburn Home Page [Aub]. Perform the experiment using Auburn as follows:

— Copy the makefile for automating compilation of benchmarks with the com-
mand: auburnExp.

— With each random-access list implementation in the current directory, each
file ending List.hs, make the benchmarks with: make SIG=List. This in-
cludes making shadows and guards for random-access lists (see Sect. 3.1).
Auburn guesses at these from the type signatures of the operations. The
makefile will stop to allow the user to check the accuracy of the guess. In the
case of random-access lists, it is correct. Restart the makefile with: make.

— The makefile also makes a null implementation, which implements an ADT
in a type-correct but value-incorrect manner. It does a minimum of work. It
is used to estimate the overhead in DUG evaluation.

— Make a profile for each of the 4 combinations of properties. Auburn makes a
Haskell script to do this. It requires a small change (one line) to reflect the
properties and settings we chose.

— Make DUGSs from these 4 profiles with: makeDugs -S 3 -n 100000. This uses
3 different random seeds for each, creating 12 DUGs, each DUG containing
100000 nodes.

www.manaraa.com

— Run and time each of the 7 DUG evaluators on each of the 12 buGs. Evaluate
each DUG once internal repetition of evaluation is sometimes useful for
increasing the time taken, but we do not need it for this experiment. Take
three timed runs of an evaluator to even out any glitches in recorded times.
Use: evalDugs -R 1 -r 3.

— Process these times with: processTimes. This command sums the times for
each implementation and profile combination, subtracts the null implementa-
tion time, and finally divides by the minimum time over all implementations.
This gives an idea of the ratio of work across implementations per profile.

Manual. Perform the experiment without Auburn as follows:

— Construct benchmarks that use random-access lists in manners that cover the
4 properties of use. Take four of the five benchmarks of [Oka95], neglecting
Quicksort. Alter them to match one of the 4 properties of use, to force work
(as Haskell is lazy), and to construct lists before using them (as it is hard
to separate the time of use from the time of construction). Here are the
resulting benchmarks:

e Sum. Construct a list of size n using cons, and sum every element using
head and tail.

e Lookup. Construct a list of size n using cons, and sum every element
using lookup.

e Update. Construct a list of size n using cons, update every element using
update, update every element twice more, and sum every element using
head and tail.

e Histogram. Construct a list of n zeros using cons. Count the occurrence of
each integer in an ordinary list of 3n pseudo-randomly generated integers
over the range 0,...,n—1, using lookup and update to store these counts.
Sum the counts with head and tail to force the counting.

— Work out what values of n to use in each of the above benchmarks to fix the
number of operations done by each benchmark to approximately 100000, for
consistency with the Auburn method. Use a loop within the benchmark to
repeat the work as necessary.

— Run and time these benchmarks using each implementation (including the
null implementation). As with the Auburn method, time three runs, sum
these times, subtract the null implementation time, and divide by the mini-
mum time.

4.3 Results

Tables 2 and 3 give the results. The tables agree on the winner of three of
the four combinations of lookup factor and update factor. Naive is the best
implementation when no random-access operations are used. Threaded Skew
Binary is the best when only lookup operations are used. AVL is the best when
both lookup and update operations are used.

www.manaraa.com

Table 2. Ratios of times taken to evaluate benchmarks constructed by Auburn. Null
implementation times were subtracted before calculating the ratios. An entry marked

w o

indicates the benchmark took too long

ratio given for another implementation.

the ratio would be larger than for any

Auburn Results

Profile Properties Implementation
Benchmark|Lookup| Update |Naive|Thrd.| AVL |Braun|Slow-| Skew
Factor | Factor SBin. down |Binary
0 0 1.0{ 5.8 |127.8|36.3 |[15.0 |18.1
DUG 0 1 1.0 8.9166.5 |14.1 | 3.7
Evaluator 1 0 - 1.0 14| 7.2 43 | 38
1 1 —-|51.4 1.0] 6.9 4.4 3.7
Table 3. As Table 2 but for hand-picked benchmarks.
Manual Results
Profile Properties Implementation
Benchmark|Lookup| Update |Naive|Thrd.| AVL |Braun|Slow-| Skew
Factor | Factor SBin. down |Binary
Sum 0 0 1.0{ 2.5 |171.6|24.9 |18.6 | 2.8
Update 0 1 1.0 4.8 34 | 26
Lookup 1 0 1.0 3.3| 9.4 5.8 | 4.7
Histogram 1 1 - 3.1 1.0 4.7 28 | 3.0
Table 4. As Table 2 but with PMF and POF set to 0.2.
Auburn Results — PMF and POF = (.2
Profile Properties Implementation
Benchmark|Lookup| Update |Naive|Thrd.|AVL|Braun |Slow-| Skew
Factor | Factor SBin. down |Binary
0 0 1.0{ 5.8 |37.5| 6.9 [12.0 [13.6
DUG 0 1 1.0{ 6.2 | 4.9/10.3 4.7 | 44
Evaluator 1 0 3.7 1.0 1.9| 5.8 3.3 | 31
1 1 1.7] 1.2 1.0| 4.0 2.2 2.1

www.manaraa.com

But what about when only update operations are used? The Auburn results
show Naive as the winner, whereas the manual results show AVL as the winner,
with Naive as one of the worst! The probable cause of this difference is that
when the relevant DUGs were evaluated, updates on elements towards the rear
end of the list were not forced by the only observing operation: head. As Naive is
very lazy, it benefits greatly. For the manual benchmarks, this does not happen
because every element is forced. Adding a maximal sequence of applications of
head and tail to the buGs and re-timing evaluations produced the same results
as the manual benchmarks. This adds weight to our suspicion of the cause of
difference between times. As most applications will force most operations, we
conclude that AVL is the best implementation when only update operations are
used.

Although the Auburn and manual results differ in scale, the order in which
they place the implementations are almost always the same. From the results
of other experiments, we suspect that the differences are probably due in the
main to differences in the sizes of the lists involved. The size of a data struc-
ture can significantly affect performance. Unfortunately, this characteristic has
proved hard to capture completely. The mutation weights ratio goes someway to
capturing size, but neglects the order of applications of mutators. The size of a
version can be deduced from the operations used to produce it, but this does not,
help us to produce versions of a given size: We can measure size, but we cannot
completely influence it.

4.4 Comparing Auburn with Manual

Although the description of how to perform this experiment was longer for
Auburn than for manual, the user actually has to do less. Auburn automates
most of the work, whereas manual benchmarks need to be designed, built, tested,
compiled, run, and have the timings collected and analysed. The two most la-
borious steps for the Auburn user are:

— Make the shadows and guards. Auburn can guess at shadows and guards
by inspecting the operation types. Auburn manages to guess correctly for
many data structures: lists, queues, deques, priority queues, and so on, with
or without random-access and catenation. For other data structures, mi-
nor corrections can be made to this guess. For more exotic data structures,
Auburn can generate trivial shadows and guards, from which the user can
build their own.

— Make the profiles. Auburn creates a simple script to do this, which needed a
small change (one line) to suit our experiment. Further small changes yield
other results easily. To illustrate this, let us consider two examples:

e Persistence. How do the results change if we add persistence? For Auburn,
we make another small change (one line) to the profiles script, setting
PMF and POF to 0.2. We then re-run the experiment with three com-
mands. The results are given in Table 4. Although a few marked changes
occur (for example, for Naive with lookup factor non-zero), the winner

www.manaraa.com

10 T T T T
95 - Naive &
ThreadSkewBin +
9 I & -
85 -
- = S & &]
w > IS
27.5 - S % © -
oL & o & _
2 534408
65+ +¢ I FFF+eFE++F ++ 7
6 S @ o © _
8 ©
55k o -
5]]]]
0 0.00005 0.0001 0.00015 0.0002 0.00025

Lookup Factor

Fig. 5. Times taken to evaluate DUGs with lookup factors calculated from their profiles.
Update factor is 0, and each DuG contains 100000 nodes. Each buG was evaluated three
times, and the total time recorded.

remains the same in each category. This shows that in this case, per-
sistence does not change which implementation is best. With manual
benchmarks, adding persistence would have been a lot harder.

e Boundaries. For update factor equal to 0, we know that Naive is the
best for lookup factor equal to 0, and Threaded Skew Binary for lookup
factor equal to 1. But where is the boundary at which they perform
the same? Again, using Auburn, this requires a small change (one line)
to the profiles script, and re-entering three commands. The results are
given in Fig. 5. We see that the boundary is approximately 0.0001, which
is surprisingly small. With manual benchmarks, the lack of automation
would have imposed more work on the user.

5 Related Work

The authors published a paper at IFL’97 [MR97] benchmarking queues using
Auburn. Auburn was built around queues before being generalised, and this pa-
per shows that Auburn can cope with other data structures. We also extend
[MR97] by formalising the definition of a DuG. We also discuss the problems of
benchmark generation, and the solutions we chose, including an algorithm for
DUG generation. We make a direct comparison of benchmarking using Auburn
with benchmarking using the traditional technique of manual benchmarks. We
discuss the advantages and disadvantages of Auburn over manual benchmarking,

www.manaraa.com

Do you use update?
No Yes
Do you use lookup?
No Y

es

Use Threaded Skew Binary.

Fig. 6. Decision tree for choosing an implementation of random-access lists.

and provide some examples of where Auburn is more useful. Finally we present
some advice on which random-access list implementation to use in Haskell, based
on the benchmarking results. We know of no other attempt to automate bench-
marking of functional data structures.

Okasaki [Oka95] and O’Neill [OB97] benchmark functional random-access
lists and arrays, respectively. Okasaki uses five benchmarks, three of which use
random-access, and two do not. However, none of the benchmarks use persis-
tence. O’Neill uses two persistent benchmarks, one of which is randomly gen-
erated. However, there is no mention of the relative frequency of lookup and
update.

6 Conclusions and Future Work

We have formalised a model of how an application uses a data structure. We
have described the problems of benchmark generation, the solutions we chose,
and a resulting algorithm. We have also used an automated tool (Auburn) based
on this algorithm to benchmark six implementations of random-access list. We
compared using Auburn to using hand-picked benchmarks, and provided some
examples of where Auburn is more useful.

From the results of Sect. 4, we provide a decision tree in Fig. 6 to guide users
choosing an implementation of random-access lists. Further experiments using
more profiles and more implementations would refine this decision tree.

Future work would involve: lifting the restrictions on ADTs by allowing higher-
order operations, and operations between two or more data structures (eg. to
and from ordinary lists); lifting the restrictions on DuGs by separating order of
construction from order of evaluation, and allowing dependencies on observa-
tions; understanding the concept of persistent observations in a lazy language;
capturing size of data structure more adequately in the profile; setting down
some guidelines on benchmarking.

We dream of a time when a library of functional data structures provides
detailed decision trees for every ADT implemented.

www.manaraa.com

References

[Ada93] Stephen R. Adams. Efficient sets — a balancing act. Journal of Functional
Programming, 3(4):553-561, October 1993.

[Aub] The Auburn Home Page. http://www.cs.york.ac.uk/“gem/auburn/.

[BO96] Gerth S. Brodal and Chris Okasaki. Optimal purely functional priority
queues. Journal of Functional Programming, 6(6):839-857, November 1996.

[Erw97] Martin Erwig. Functional programming with graphs. In Proceedings of the
1997 ACM SIGPLAN International Conference on Functional Programming,
pages 52-65. ACM Press, June 1997.

[Hoo92] Rob R. Hoogerwoord. A logarithmic implementation of flexible arrays. In
Proceedings of the Second International Conference on the Mathematics of
Program Construction, volume 669 of LNCS, pages 191-207, July 1992.

[KT95] Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via
recursive slow-down. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 93 102, May 1995.

[Mo0s99] Graeme E. Moss. Benchmarking Functional Data Structures. DPhil thesis,
University of York, 1999. To be submitted.

[MR97] Graeme E. Moss and Colin Runciman. Auburn: A kit for benchmarking
functional data structures. In Proceedings of IFL’97, volume 1467 of LNCS,
pages 141-160, September 1997.

[Mye83] Eugene W. Myers. An applicative random-access stack. Information Pro-
cessing Letters, 17(5):241 248, December 1983.

[Mye84] Eugene W. Myers. Efficient applicative data types. In Conference Record of
the Eleventh Annual ACM Symposium on Principles of Programming Lan-
guages, pages 66 75, 1984.

[OB97] Melissa E. O’Neill and F. Warren Burton. A new method for functional
arrays. Journal of Functional Programming, 7(5):487 513, September 1997.

[Oka95] Chris Okasaki. Purely functional random-access lists. In Conference Record
of FPCA ’95, pages 86-95. ACM Press, June 1995.

[Oka96] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of
Computer Science, Carnegie Mellon University, September 1996.

www.manharaa.com

