
www.manaraa.com

Automated Benchmarking of Functional DataStructuresGraeme E. Moss and Colin Runcimanc
 Springer-VerlagDepartment of Computer Science, University of York, UKfgem,coling@cs.york.ac.ukAbstract. Despite a lot of recent interest in purely functional datastructures, for example [Ada93, Oka95, BO96, Oka96, OB97, Erw97],few have been benchmarked. Of these, even fewer have their performancequali�ed by how they are used. But how a data structure is used cansigni�cantly a�ect performance. This paper makes three original con-tributions. (1) We present an algorithm for generating a benchmarkaccording to a given use of data structure. (2) We compare use of anautomated tool based on this algorithm, with the traditional techniqueof hand-picked benchmarks, by benchmarking six implementations ofrandom-access list using both methods. (3) We use the results of thisbenchmarking to present a decision tree for the choice of random-accesslist implementation, according to how the list will be used.1 MotivationRecent years have seen renewed interest in purely functional data structures:sets [Ada93], random-access lists [Oka95], priority queues [BO96], arrays [OB97],graphs [Erw97], and so on. But, empirical performance receives little attention,and is usually based on a few hand-picked benchmarks. Furthermore, the per-formance of a data structure usually varies according to how it is used, yet thisis mostly overlooked.For example, Okasaki [Oka95] uses �ve simple benchmarks to measure theperformance of di�erent implementations of a list providing random access. Hepoints out that three of the benchmarks use random access, and two do not.However, all the benchmarks are single-threaded. How do the data structuresperform under non-single-threaded use? We simply do not know.Okasaki presents many new data structures in his thesis [Oka96], but withoutmeasurements of practical performance. He writes in a section on future work:\The theory and practice of benchmarking [functional] data structures is still inits infancy."How can we make benchmarking easier and more reliable? A major problemis �nding a range of benchmarks that we know use the data structure in di�erentways. If we could generate a benchmark according to a well-de�ned use of thedata structure, we could easily make a table listing performance against a rangeof uses.



www.manaraa.com

To make precise \the use of a data structure" we need a model. Section 2de�nes such a model: a datatype usage graph, or dug. Section 2 also de�nesa pro�le, summarising the important characteristics of a dug. Section 3 givesan algorithm for generating a benchmark from a pro�le. Section 4 introduces abenchmarking kit, called Auburn, that automates benchmarking using the algo-rithm of Sections 3. Section 4 then compares benchmarking six implementationsof random-access lists manually against using Auburn. Section 5 discusses relatedwork. Section 6 concludes and discusses future work.Some of the details of this paper are only relevant to the language we use:Haskell, a pure functional language using lazy evaluation. Such details are clearlyindicated.2 Modelling Datatype UsageHow can we capture the way an application uses a data structure? Take the Sumbenchmark of [Oka95] as an example of an application. Sum uses an implemen-tation of random-access lists (see Fig. 1) to build a list of n integers using cons,and then sum this list using head and tail. Code for Sum is given in Fig. 2(a).Let us use a graph to capture how Sum uses the list operations. Let a noderepresent the result of applying an operation, and let the incoming arcs indi-cate the arguments taken from the results of other operations. Let any otherarguments be included in the label of the node. Figure 2(b) shows this graph.Node 1 represents the result of empty, which is an empty list. Node 2 repre-sents the result of applying cons to 1 and empty, which is a list containing justthe integer 1. And so on, till node n+1 represents a list of n copies of the integer1. This is how Sum builds a list of n integers.Node n+2 represents the result of applying head to this list, which is the �rstelement in the list. Node n+ 3 represents the result of applying tail to this list,which is all but the �rst element. Node n + 4 represents the result of applyinghead to the list of node n + 3, giving the second element. Every other elementof the list is removed in the same way, till node 3n represents the last element,and node 3n+ 1 represents the empty list. This is how Sum sums the list of nintegers.The authors introduced such a graph in [MR97], given the name datatypeusage graph, or dug. The de�nition was informal in [MR97] but we shall nowgive a brief formal de�nition. To abstract over many competing data structuresproviding similar operations, we insist on a dug describing the use of an adt.The same dug can then describe the use of any implementation of that adt.We restrict an adt to being simple.De�nition 1 (Simple adt)A simple adt provides a type constructor T of arity one, and only operationsover types shown in Table 1.Example 1The random-access list adt, whose signature is given in Fig. 1, is a simple adt,



www.manaraa.com

empty :: List acons :: a ! List a ! List atail :: List a ! List aupdate :: List a ! Int ! a ! List ahead :: List a ! alookup :: List a ! Int ! aFig. 1. The signature of a random-access list abstract datatype (adt).(a) sum :: Int ! Intsum n = sumList n (buildList n)where buildList 0 = emptybuildList k = cons 1 (buildList (k-1))sumList 0 xs = 0sumList k xs = head xs + sumList (k-1) (tail xs)(b) 1 2 � � � n n+1n+2 n+3n+4 � � � 3n�13n 3n+1Node Operation1 empty2; : : : ; n+ 1 �x � cons 1 xn+ 2; n+ 4; : : : ; 3n �x � head xn+ 3; n+ 5; : : : ; 3n+ 1 �x � tail xFig. 2. The Sum benchmark of [Oka95] using the operations of the adt in Fig. 1.(a) Code. (b) dug.Table 1. The types of operations allowed in a simple adt providing a type constructorT, where a is a type variable. Any value of type T a is called a version. Each adtoperation is given a single role. A generator takes no versions, but returns a version.A mutator takes at least one version, and returns a version. An observer takes at leastone version, but does not return a version.Argument Types Result Type Rolea, Int T a GeneratorT a (at least one), a, Int T a MutatorT a (at least one), a, Int a, Int, Bool Observer



www.manaraa.com

providing the following: a type constructor List; a generator empty; mutatorscons, tail, and update; and observers head and lookup.The nodes are labelled by a function � with partial applications of adt opera-tions.De�nition 2 (dug pap)A dug pap (partial application) is a function f obtained by supplying zero ormore atomic values as arguments to any operation g of a simple adt. We saythat f is a pap of g.Example 2The dug paps that label nodes of Fig. 2(b) are: empty, �x � cons 1 x, �x � headx, and �x � tail x.To indicate which argument corresponds to which arc, if more than one arc isincident to a node, we order the arcs with positive integers using a function � .To indicate the order of evaluation, we label each node with a positive integerusing a function �.De�nition 3 (dug)Given a simple adt A, a dug is a directed graph G with the following functions:{ A function � labelling every node with a pap of an operation of A{ A function � , which for all nodes with two or more incoming arcs, whenrestricted to those arcs, is a bijection with the set f1; : : : ; jg for some j � 2{ A bijection � from the nodes to the set f1; : : : ; ng for some n � 0The following conditions must also be true:C1 If w is a successor of v, then �(w) > �(v).C2 Every node labelled by � as an observer has no arcs from it.The reasons for imposing these conditions are given in the problems list ofSect. 3.1.Example 3A dug is shown in Fig. 2(b). The function � is given by the table, � is redundantas no node has more than one incoming arc, and � is given by the numberlabelling each node.To help identify important characteristics of use, we compact important informa-tion from a dug into a pro�le. One piece of important information is the degreeof persistence, that is, the re-use of a previously mutated data structure.De�nition 4 (Persistent Arc)Consider the arcs from some v to v1; : : : ; vk. Let vi be the mutator node orderedearliest by �, if it exists. Any arc from v to some vj ordered after vi representsan operation done after the �rst mutation, and is therefore persistent.The properties making up a pro�le re
ect important characteristics of datatypeusage. They are fashioned to make benchmark generation easy. Other reasonsfor choosing these properties are not discussed here { see [Mos99].



www.manaraa.com

De�nition 5 (Pro�le)The pro�le of a dug comprises �ve properties:{ Generation weights : The ratio of the number of nodes labelled with eachgenerator.{ Mutation-observation weights : The ratio of the number of arcs leading toeach mutator or observer.{ Mortality : The fraction of generator and mutator nodes that have no arcsleading to a mutator.{ Persistent mutation factor (pmf): The pmf is the fraction of arcs to muta-tors that are persistent.{ Persistent observation factor (pof): The pof is the fraction of arcs to ob-servers that are persistent.Example 5The pro�le of the dug of Fig. 2(b) is as follows: the generation weights are trivialas there is only one generator, the mutation-observation weights arecons : tail : update : head : lookup = n : n : 0 : n : 0,the mortality is 1=(2n+ 1), and the pmf and the pof are both zero.3 Benchmark GenerationIf we can generate a dug with a given pro�le, then a dug evaluator can act asa benchmark with a well-de�ned use of data structure (the given pro�le). Thereare many dugs with a given pro�le, but choosing just one might introduce bias.Therefore we shall use probabilistic means to generate a family of dugs thathave on average the pro�le requested.3.1 dug GenerationHere are some problems with dug generation, and the solutions we chose:{ Avoid ill-formed applications of operations. For example, we need to avoidforming applications such as head empty. We introduce a guard for each oper-ation, telling us which applications are well-de�ned. See the section Shadowsand Guards below for more details.{ Order the evaluation. We cannot reject an ill-formed application of an oper-ation till we know all the arguments. Therefore a node must be constructedafter its arguments. Under the privacy imposed by adts and the restric-tions imposed by lazy evaluation, we can only order the evaluation of theobservers. For simplicity, we evaluate the observers as they are constructed.The function � therefore gives the order of construction of all nodes, and theorder of evaluation of observer nodes. This is condition C1 of Defn. 3.



www.manaraa.com

(a) type Shadow = IntemptyS :: ShadowconsS :: Int ! Shadow ! ShadowtailS :: Shadow ! ShadowupdateS :: Shadow ! Int ! Int ! Shadow emptyS = 0consS x s = s+1tailS s = s{1updateS s i x = s(b) emptyG :: BoolconsG :: Shadow ! [IntSubset]tailG :: Shadow ! BoolupdateG :: Shadow ! [IntSubset]headG :: Shadow ! BoolindexG :: Shadow ! [IntSubset] emptyG = TrueconsG s = [All]tailG s = s>0updateG s = [0:..:(s{1),All]headG s = s>0indexG s = [0:..:(s{1)]Fig. 3. (a) Shadow operations for random-access lists, maintaining the length of thelist. (b) Guards for random-access lists. A guard returns a list of integer subsets, one foreach non-version argument, in order. (Haskell does not support functions over tuples ofarbitrary size { necessary for the application of an arbitrary guard { so we are forcedto use lists.) If an operation does not take any non-version arguments, a boolean isreturned. The type IntSubset covers subsets of the integers. The value m:..:n indicatesthe subset from m to n inclusive, and All indicates the maximum subset.{ Choose non-version arguments. Version arguments are of type T a, and canbe chosen from the version results of other nodes. Choosing non-versionarguments in the same way is too restrictive { for example, where does theargument of type a for the �rst application of cons come from? Within thetype of each operation, we instantiate a to Int, so we need only choose valuesof type Int. For simplicity, we avoid choosing any non-version argumentsfrom the results of other nodes. This is condition C2 of Defn. 3.Shadows and Guards. To avoid creating ill-de�ned applications whilst gen-erating a dug, we maintain a shadow of every version. The shadow contains theinformation needed to avoid an ill-de�ned application of any operation to thisversion. We create the shadows using shadow operations: the type of a shadowoperation is the same except that every version is replaced by a shadow. Aguard takes the shadow of every version argument, and returns the ranges ofnon-version arguments for which the application is well-de�ned. Any combina-tion of these non-version arguments must provide a well-de�ned application.For example, for random-access lists we maintain the length of the list asso-ciated with a version node. This allows us to decide whether we can apply headto this node: if the length is non-zero, then we can; otherwise, we cannot. Simi-larly, applications of other operations can be checked. Figure 3(a) gives shadowoperations for random-access lists and Fig. 3(b) gives guards.



www.manaraa.com

The Algorithm. We build a dug one node at a time. Each node has a future,recording which operations we have planned to apply to the node, in order. The�rst operation in a node's future is called the head operation. The nodes with anon-empty future together make up the frontier. We specify a minimum and amaximum size of the frontier. The minimum size is usually 1, though a largervalue encourages diversity. Limiting the maximum size of the frontier caps spaceusage of the algorithm.Figure 4 shows the algorithm. We make a new node by choosing versionarguments from the frontier. We place each argument in a bu�er according tothe argument's head operation. When a bu�er for an operation f is full (whenit contains as many version arguments as f needs), we empty the bu�er of itscontents vs, and attempt to apply f to vs using the function try application.Calling try application(f,vs) uses the guard of operation f to see whether fcan be applied to version arguments vs. If one of the integer subsets returnedby the guard is empty, no choice of integer arguments will make the applicationwell-formed, and so we must abandon this application. Otherwise, the guardreturns a list of integer subsets, from which we choose one integer each, to givethe integer arguments is. Applying f to vs and is gives a new node.Planning for the Future. We plan the future of a new node v as follows. Weuse the �ve pro�le properties to make the dug have the pro�le requested, onaverage. Mortality gives the probability that the future of v will contain nomutators. If the future will contain at least one mutator, then the fraction ofpersistent mutators should equal pmf. Every application of a mutator bar the�rst is persistent. Therefore the number m of persistent mutators is given by:mm+ 1 = pmf) m = pmf1� pmfHence a random variable with mean pmf=(1� pmf) gives the number of addi-tional mutators. Note that a pmf of 0 guarantees each node is mutated at mostonce.The mutation-observation weights ratio allows us to calculate the averagenumber r of applications of observers per application of a mutator. We assumea mutator made v, and let a random variable with mean r decide the number ofobservers in the future of v. Typically the number of applications of generatorsis very small, and so this assumption is reasonable. The number of observersordered after the �rst mutator is given by a random variable with mean pof.Finally, we choose which mutators and observers to use from probabilities givenby the mutation-observation weights ratio.Note that condition C2 of Defn. 3 implies that every observer node has nofuture.3.2 dug EvaluationA dug evaluator uses an implementation of the adt to evaluate the result ofevery observation. The nodes are constructed in the same order that they were



www.manaraa.com

generate dug() :=dug := fgfrontier := fg8f �bu�er(f ) := fgwhile #dug < �nal dug size doif #frontier < min frontier size theng := choose a generator using generation weights ratiotry application(g,fg)else-if #frontier > max frontier size thenremove a node from frontierelsev := remove a node from frontierf := remove head operation of vadd v to bu�er(f )if #bu�er(f ) = number of version arguments taken by f thenvs := bu�er(f )bu�er(f ) := fgtry application(f,vs)��odtry application(f,vs) :=int subsets := apply guard of operation f to shadows of vsif each set in int subsets is not empty thenis := choose one integer from each set in int subsetsv := make node by applying f to version arguments vs and integers isshadow of v := apply shadow of f to shadows of vsif f is an observer thenfuture of v := emptyelseplan future of v�add v to dugif v has a non-empty future thenadd v to frontier��add each node in vs with a non-empty future to frontierFig. 4. dug generation algorithm.



www.manaraa.com

generated. An observer node is evaluated immediately. This �ts the intendedbehaviour (see the second problem listed for dug generation).4 An Example of a Benchmarking ExperimentAuburn is an automated benchmarking kit built around the benchmark genera-tion of Sect. 3. We shall benchmark six implementations of random-access lists(1) using Auburn, and (2) using benchmarks constructed manually. We shallthen compare these two methods.4.1 AimWe aim to measure the performance of six implementations of random-accesslists: Naive (ordinary lists), Threaded Skew Binary (Myers' stacks [Mye83]),AVL (AVL trees [Mye84]), Braun (Braun trees [Hoo92]), Slowdown (Kaplanand Tarjan's deques [KT95]), and Skew Binary (Okasaki's lists [Oka95]). Wewill qualify this performance by two properties of use:{ Lookup factor. The number of applications of lookup divided by the numberof applications of ordinary list operations. We use just two settings: 0 and 1.{ Update factor. This is as lookup factor but replacing lookup with update.Again, we use only two settings: 0 and 1.There are 4 di�erent combinations of settings of these properties.4.2 MethodAuburn. We use Auburn version 2.0a. For the latest version of Auburn, see theAuburn Home Page [Aub]. Perform the experiment using Auburn as follows:{ Copy the make�le for automating compilation of benchmarks with the com-mand: auburnExp.{ With each random-access list implementation in the current directory, each�le ending List.hs, make the benchmarks with: make SIG=List. This in-cludes making shadows and guards for random-access lists (see Sect. 3.1).Auburn guesses at these from the type signatures of the operations. Themake�le will stop to allow the user to check the accuracy of the guess. In thecase of random-access lists, it is correct. Restart the make�le with: make.{ The make�le also makes a null implementation, which implements an adtin a type-correct but value-incorrect manner. It does a minimum of work. Itis used to estimate the overhead in dug evaluation.{ Make a pro�le for each of the 4 combinations of properties. Auburn makes aHaskell script to do this. It requires a small change (one line) to re
ect theproperties and settings we chose.{ Make dugs from these 4 pro�les with: makeDugs -S 3 -n 100000. This uses3 di�erent random seeds for each, creating 12 dugs, each dug containing100000 nodes.



www.manaraa.com

{ Run and time each of the 7 dug evaluators on each of the 12 dugs. Evaluateeach dug once { internal repetition of evaluation is sometimes useful forincreasing the time taken, but we do not need it for this experiment. Takethree timed runs of an evaluator to even out any glitches in recorded times.Use: evalDugs -R 1 -r 3.{ Process these times with: processTimes. This command sums the times foreach implementation and pro�le combination, subtracts the null implementa-tion time, and �nally divides by the minimum time over all implementations.This gives an idea of the ratio of work across implementations per pro�le.Manual. Perform the experiment without Auburn as follows:{ Construct benchmarks that use random-access lists in manners that cover the4 properties of use. Take four of the �ve benchmarks of [Oka95], neglectingQuicksort. Alter them to match one of the 4 properties of use, to force work(as Haskell is lazy), and to construct lists before using them (as it is hardto separate the time of use from the time of construction). Here are theresulting benchmarks:� Sum. Construct a list of size n using cons, and sum every element usinghead and tail.� Lookup. Construct a list of size n using cons, and sum every elementusing lookup.� Update. Construct a list of size n using cons, update every element usingupdate, update every element twice more, and sum every element usinghead and tail.� Histogram. Construct a list of n zeros using cons. Count the occurrence ofeach integer in an ordinary list of 3n pseudo-randomly generated integersover the range 0; : : : ; n�1, using lookup and update to store these counts.Sum the counts with head and tail to force the counting.{ Work out what values of n to use in each of the above benchmarks to �x thenumber of operations done by each benchmark to approximately 100000, forconsistency with the Auburn method. Use a loop within the benchmark torepeat the work as necessary.{ Run and time these benchmarks using each implementation (including thenull implementation). As with the Auburn method, time three runs, sumthese times, subtract the null implementation time, and divide by the mini-mum time.4.3 ResultsTables 2 and 3 give the results. The tables agree on the winner of three ofthe four combinations of lookup factor and update factor. Naive is the bestimplementation when no random-access operations are used. Threaded SkewBinary is the best when only lookup operations are used. AVL is the best whenboth lookup and update operations are used.



www.manaraa.com

Table 2. Ratios of times taken to evaluate benchmarks constructed by Auburn. Nullimplementation times were subtracted before calculating the ratios. An entry marked\{" indicates the benchmark took too long { the ratio would be larger than for anyratio given for another implementation.Auburn ResultsPro�le Properties ImplementationBenchmark Lookup Update Naive Thrd. AVL Braun Slow- SkewFactor Factor SBin. down Binary0 0 1.0 5.8 127.8 36.3 15.0 18.1dug 0 1 1.0 { 8.9 56.5 14.1 3.7Evaluator 1 0 { 1.0 1.4 7.2 4.3 3.81 1 { 51.4 1.0 6.9 4.4 3.7
Table 3. As Table 2 but for hand-picked benchmarks.Manual ResultsPro�le Properties ImplementationBenchmark Lookup Update Naive Thrd. AVL Braun Slow- SkewFactor Factor SBin. down BinarySum 0 0 1.0 2.5 171.6 24.9 18.6 2.8Update 0 1 { { 1.0 4.8 3.4 2.6Lookup 1 0 { 1.0 3.3 9.4 5.8 4.7Histogram 1 1 { 3.1 1.0 4.7 2.8 3.0
Table 4. As Table 2 but with pmf and pof set to 0.2.Auburn Results { pmf and pof = 0.2Pro�le Properties ImplementationBenchmark Lookup Update Naive Thrd. AVL Braun Slow- SkewFactor Factor SBin. down Binary0 0 1.0 5.8 37.5 6.9 12.0 13.6dug 0 1 1.0 6.2 4.9 10.3 4.7 4.4Evaluator 1 0 3.7 1.0 1.9 5.8 3.3 3.11 1 1.7 1.2 1.0 4.0 2.2 2.1



www.manaraa.com

But what about when only update operations are used? The Auburn resultsshow Naive as the winner, whereas the manual results show AVL as the winner,with Naive as one of the worst! The probable cause of this di�erence is thatwhen the relevant dugs were evaluated, updates on elements towards the rearend of the list were not forced by the only observing operation: head. As Naive isvery lazy, it bene�ts greatly. For the manual benchmarks, this does not happenbecause every element is forced. Adding a maximal sequence of applications ofhead and tail to the dugs and re-timing evaluations produced the same resultsas the manual benchmarks. This adds weight to our suspicion of the cause ofdi�erence between times. As most applications will force most operations, weconclude that AVL is the best implementation when only update operations areused.Although the Auburn and manual results di�er in scale, the order in whichthey place the implementations are almost always the same. From the resultsof other experiments, we suspect that the di�erences are probably due in themain to di�erences in the sizes of the lists involved. The size of a data struc-ture can signi�cantly a�ect performance. Unfortunately, this characteristic hasproved hard to capture completely. The mutation weights ratio goes someway tocapturing size, but neglects the order of applications of mutators. The size of aversion can be deduced from the operations used to produce it, but this does nothelp us to produce versions of a given size: We can measure size, but we cannotcompletely in
uence it.4.4 Comparing Auburn with ManualAlthough the description of how to perform this experiment was longer forAuburn than for manual, the user actually has to do less. Auburn automatesmost of the work, whereas manual benchmarks need to be designed, built, tested,compiled, run, and have the timings collected and analysed. The two most la-borious steps for the Auburn user are:{ Make the shadows and guards. Auburn can guess at shadows and guardsby inspecting the operation types. Auburn manages to guess correctly formany data structures: lists, queues, deques, priority queues, and so on, withor without random-access and catenation. For other data structures, mi-nor corrections can be made to this guess. For more exotic data structures,Auburn can generate trivial shadows and guards, from which the user canbuild their own.{ Make the pro�les. Auburn creates a simple script to do this, which needed asmall change (one line) to suit our experiment. Further small changes yieldother results easily. To illustrate this, let us consider two examples:� Persistence. How do the results change if we add persistence? For Auburn,we make another small change (one line) to the pro�les script, settingpmf and pof to 0.2. We then re-run the experiment with three com-mands. The results are given in Table 4. Although a few marked changesoccur (for example, for Naive with lookup factor non-zero), the winner



www.manaraa.com

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.00005 0.0001 0.00015 0.0002 0.00025

T
im

e(
s)

Lookup Factor

Naive
ThreadSkewBin

Fig. 5. Times taken to evaluate dugs with lookup factors calculated from their pro�les.Update factor is 0, and each dug contains 100000 nodes. Each dug was evaluated threetimes, and the total time recorded.remains the same in each category. This shows that in this case, per-sistence does not change which implementation is best. With manualbenchmarks, adding persistence would have been a lot harder.� Boundaries. For update factor equal to 0, we know that Naive is thebest for lookup factor equal to 0, and Threaded Skew Binary for lookupfactor equal to 1. But where is the boundary at which they performthe same? Again, using Auburn, this requires a small change (one line)to the pro�les script, and re-entering three commands. The results aregiven in Fig. 5. We see that the boundary is approximately 0.0001, whichis surprisingly small. With manual benchmarks, the lack of automationwould have imposed more work on the user.5 Related WorkThe authors published a paper at IFL'97 [MR97] benchmarking queues usingAuburn. Auburn was built around queues before being generalised, and this pa-per shows that Auburn can cope with other data structures. We also extend[MR97] by formalising the de�nition of a dug. We also discuss the problems ofbenchmark generation, and the solutions we chose, including an algorithm fordug generation. We make a direct comparison of benchmarking using Auburnwith benchmarking using the traditional technique of manual benchmarks. Wediscuss the advantages and disadvantages of Auburn over manual benchmarking,



www.manaraa.com

Do you use update? Use AVL.YesDo you use lookup?NoUse Naive.No Use Threaded Skew Binary.Yes
Fig. 6. Decision tree for choosing an implementation of random-access lists.and provide some examples of where Auburn is more useful. Finally we presentsome advice on which random-access list implementation to use in Haskell, basedon the benchmarking results. We know of no other attempt to automate bench-marking of functional data structures.Okasaki [Oka95] and O'Neill [OB97] benchmark functional random-accesslists and arrays, respectively. Okasaki uses �ve benchmarks, three of which userandom-access, and two do not. However, none of the benchmarks use persis-tence. O'Neill uses two persistent benchmarks, one of which is randomly gen-erated. However, there is no mention of the relative frequency of lookup andupdate.6 Conclusions and Future WorkWe have formalised a model of how an application uses a data structure. Wehave described the problems of benchmark generation, the solutions we chose,and a resulting algorithm. We have also used an automated tool (Auburn) basedon this algorithm to benchmark six implementations of random-access list. Wecompared using Auburn to using hand-picked benchmarks, and provided someexamples of where Auburn is more useful.From the results of Sect. 4, we provide a decision tree in Fig. 6 to guide userschoosing an implementation of random-access lists. Further experiments usingmore pro�les and more implementations would re�ne this decision tree.Future work would involve: lifting the restrictions on adts by allowing higher-order operations, and operations between two or more data structures (eg. toand from ordinary lists); lifting the restrictions on dugs by separating order ofconstruction from order of evaluation, and allowing dependencies on observa-tions; understanding the concept of persistent observations in a lazy language;capturing size of data structure more adequately in the pro�le; setting downsome guidelines on benchmarking.We dream of a time when a library of functional data structures providesdetailed decision trees for every adt implemented.



www.manaraa.com

References[Ada93] Stephen R. Adams. E�cient sets { a balancing act. Journal of FunctionalProgramming, 3(4):553{561, October 1993.[Aub] The Auburn Home Page. http://www.cs.york.ac.uk/~gem/auburn/.[BO96] Gerth S. Brodal and Chris Okasaki. Optimal purely functional priorityqueues. Journal of Functional Programming, 6(6):839{857, November 1996.[Erw97] Martin Erwig. Functional programming with graphs. In Proceedings of the1997 ACM SIGPLAN International Conference on Functional Programming,pages 52{65. ACM Press, June 1997.[Hoo92] Rob R. Hoogerwoord. A logarithmic implementation of 
exible arrays. InProceedings of the Second International Conference on the Mathematics ofProgram Construction, volume 669 of LNCS, pages 191{207, July 1992.[KT95] Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation viarecursive slow-down. In Proceedings of the 27th Annual ACM Symposium onTheory of Computing, pages 93{102, May 1995.[Mos99] Graeme E. Moss. Benchmarking Functional Data Structures. DPhil thesis,University of York, 1999. To be submitted.[MR97] Graeme E. Moss and Colin Runciman. Auburn: A kit for benchmarkingfunctional data structures. In Proceedings of IFL'97, volume 1467 of LNCS,pages 141{160, September 1997.[Mye83] Eugene W. Myers. An applicative random-access stack. Information Pro-cessing Letters, 17(5):241{248, December 1983.[Mye84] Eugene W. Myers. E�cient applicative data types. In Conference Record ofthe Eleventh Annual ACM Symposium on Principles of Programming Lan-guages, pages 66{75, 1984.[OB97] Melissa E. O'Neill and F. Warren Burton. A new method for functionalarrays. Journal of Functional Programming, 7(5):487{513, September 1997.[Oka95] Chris Okasaki. Purely functional random-access lists. In Conference Recordof FPCA '95, pages 86{95. ACM Press, June 1995.[Oka96] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School ofComputer Science, Carnegie Mellon University, September 1996.


